3,910 research outputs found

    Towards Coherent Neutrino Detection Using Low-Background Micropattern Gas Detectors

    Get PDF
    The detection of low energy neutrinos (<< few tens of MeV) via coherent nuclear scattering remains a holy grail of sorts in neutrino physics. This uncontroversial mode of interaction is expected to profit from a sizeable increase in cross section proportional to neutron number squared in the target nucleus, an advantageous feature in view of the small probability of interaction via all other channels in this energy region. A coherent neutrino detector would open the door to many new applications, ranging from the study of fundamental neutrino properties to true "neutrino technology". Unfortunately, present-day radiation detectors of sufficiently large mass (>> 1 kg) are not sensitive to sub-keV nuclear recoils like those expected from this channel. The advent of Micropattern Gas Detectors (MPGDs), new technologies originally intended for use in High Energy Physics, may soon put an end to this impasse. We present first tests of MPGDs fabricated with radioclean materials and discuss the approach to assessing their sensitivity to these faint signals. Applications are reviewed, in particular their use as a safeguard against illegitimate operation of nuclear reactors. A first industrial mass production of Gas Electron Multipliers (GEMs) is succinctly described.Comment: Presented at the 2002 IEEE Nuclear Science Symposium and Medical Imaging Conference, Norfolk VA, November 10-16. Submitted to IEEE Tran. Nucl. Sci. Five pages, eight figure

    Measurement of the Neutron Lifetime by Counting Trapped Protons in a Cold Neutron Beam

    Full text link
    A measurement of the neutron lifetime τn\tau_{n} performed by the absolute counting of in-beam neutrons and their decay protons has been completed. Protons confined in a quasi-Penning trap were accelerated onto a silicon detector held at a high potential and counted with nearly unit efficiency. The neutrons were counted by a device with an efficiency inversely proportional to neutron velocity, which cancels the dwell time of the neutron beam in the trap. The result is τn=(886.6±1.2[stat]±3.2[sys])\tau_{n} = (886.6\pm1.2{\rm [stat]}\pm3.2{\rm [sys]}) s, which is the most precise measurement of the lifetime using an in-beam method. The systematic uncertainty is dominated by neutron counting, in particular the mass of the deposit and the 6^{6}Li({\it{n,t}}) cross section. The measurement technique and apparatus, data analysis, and investigation of systematic uncertainties are discussed in detail.Comment: 71 pages, 20 figures, 9 tables; submitted to PR

    Charm production in nonresonant e(+)e(-) annihilations at √s =10.55 GeV

    Get PDF
    This is the publisher's version also available electronically from http://journals.aps.org/prd/abstract/10.1103/PhysRevD.37.1719We report results on the differential and total cross sections for inclusive production of the charmed particles D*+, D*(0), D(0), D(+), D(s), and Λc in e(+)e(-) annihilations at √s=10.55 GeV. Widely used quark fragmentation models are discussed and compared with the measured charmed-particle momentum distributions. This comparison, as well as that with measurements at other center-of-mass energies, shows the need to take QCD corrections into account and their importance for a correct interpretation of the model parameters. The observed rate of D(0) and D(+) production is compared to the expected total charm production cross section. We measure the probability of a charmed meson being produced as a vector meson and the D*(+) decay branching fraction into D(0)π+

    Measurement of the eta-Meson Mass using psi(2S) --> eta J/psi

    Full text link
    We measure the mass of the eta meson using psi(2S) --> eta J/psi events acquired with the CLEO-c detector operating at the CESR e+e- collider. Using the four decay modes eta --> gamma gamma, 3pi0, pi+pi-pi0, and pi+pi-gamma, we find M(eta)=547.785 +- 0.017 +- 0.057 MeV, in which the first uncertainty is statistical and the second systematic. This result has an uncertainty comparable to the two most precise previous measurements and is consistent with that of NA48, but is inconsistent at the level of 6.5sigma with the much smaller mass obtained by GEM.Comment: 10 pages postscript,also available through http://www.lns.cornell.edu/public/CLNS/2007/, Submitted to PR

    Determination of the D0 -> K+pi- Relative Strong Phase Using Quantum-Correlated Measurements in e+e- -> D0 D0bar at CLEO

    Full text link
    We exploit the quantum coherence between pair-produced D0 and D0bar in psi(3770) decays to study charm mixing, which is characterized by the parameters x and y, and to make a first determination of the relative strong phase \delta between doubly Cabibbo-suppressed D0 -> K+pi- and Cabibbo-favored D0bar -> K+pi-. We analyze a sample of 1.0 million D0D0bar pairs from 281 pb^-1 of e+e- collision data collected with the CLEO-c detector at E_cm = 3.77 GeV. By combining CLEO-c measurements with branching fraction input and time-integrated measurements of R_M = (x^2+y^2)/2 and R_{WS} = Gamma(D0 -> K+pi-)/Gamma(D0bar -> K+pi-) from other experiments, we find \cos\delta = 1.03 +0.31-0.17 +- 0.06, where the uncertainties are statistical and systematic, respectively. In addition, by further including external measurements of charm mixing parameters, we obtain an alternate measurement of \cos\delta = 1.10 +- 0.35 +- 0.07, as well as x\sin\delta = (4.4 +2.7-1.8 +- 2.9) x 10^-3 and \delta = 22 +11-12 +9-11 degrees.Comment: 37 pages, also available through http://www.lns.cornell.edu/public/CLNS/2007/. Incorporated referee's comment

    New Measurements of Upsilon(1S) Decays to Charmonium Final States

    Full text link
    Using substantially larger data samples collected by the CLEO III detector, we report on new measurements of the decays of Upsilon(1S) to charmonium final states, including J/Psi, psi(2S), and chi_cJ. The latter two are first observations of these decays. We measure the branching fractions as follows: B(Y(1S)--> J/Psi+X)=(6.4+-0.4+-0.6)x10^-4, B(Y(1S)--> psi(2S)+X)/B(Y(1S)--> J/Psi+X)=0.41+-0.11+-0.08, B(Y(1S)--> chi_c1+X)/B(Y(1S)--> J/Psi+X)=0.35+-0.08+-0.06, B(Y(1S)--> chi_c2+X)/B(Y(1S)--> J/Psi+X)=0.52+-0.12+-0.09, and B(Y(1S)--> chi_c0+X)/B(Y(1S)--> J/Psi+X)<7.4% at 90% confidence level. We also report on the momentum and angular spectra of J/Psi's in Upsilon(1S) decay. The results are compared to predictions of the color octet and color singlet models.Comment: 27 pages postscript,also available through http://w4.lns.cornell.edu/public/CLNS/, submitted to PR

    Observation of New States Decaying into Λc+ππ+\Lambda_{c}^{+}\pi^{-}\pi^{+}

    Full text link
    Using 13.7 fb^{-1} of data recorded by the CLEO detector at CESR, we investigate the spectrum of charmed baryons which decay into Lambda_c^+ pi^- pi^+ and are more massive than the Lambda_{c1} baryons. We find evidence for two new states: one is broad and has an invariant mass roughly 480 MeV above that of the Lambda_c^+; the other is narrow with an invariant mass of 596 +- 1 +- 2 MeV above the Lambda_c^+ mass. These results are preliminary.Comment: 11 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    A Measurement of the Decay Asymmetry Parameters in \Xi_{c}^{0}\to \X^{-}\pi^{+}

    Full text link
    Using the CLEO II detector at the Cornell Electron Storage Ring we have measured the Ξc0\Xi_c^{0} decay asymmetry parameter in the decay Ξc0Ξπ+\Xi_c^{0} \to \Xi^{-} \pi^+. We find αΞc0αΞ=0.26±0.18(stat)0.04+0.05(syst)\alpha_{\Xi_c^{0}} \alpha_{\Xi} = 0.26 \pm 0.18{(stat)}^{+0.05}_{-0.04}{(syst)}, using the world average value of αΞ=0.456±0.014\alpha_{\Xi} = -0.456 \pm 0.014 we obtain αΞc0=0.56±0.39(stat)0.09+0.10(syst)\alpha_{\Xi_c^{0}} = -0.56 \pm 0.39{(stat)}^{+0.10}_{-0.09}{(syst)}. The physically allowed range of a decay asymmetry parameter is 1<α<+1-1<\alpha<+1. Our result prefers a negative value: αΞc0\alpha_{\Xi_c^{0}} is <0.1<0.1 at the 90% CL. The central value occupies the middle of the theoretically expected range but is not yet precise enough to choose between models.Comment: 10 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    Search for psi(2S)--> eta_c pi^+ pi^- pi^0

    Full text link
    Using 5.63 pb^-1 of data accumulated at the psi(2S) resonance with the CLEO III and CLEO-c detectors corresponding to 3.08 million psi(2S) decays, a search is performed for the decay psi(2S) -> eta_c pi^+pi^-pi^0 to test a theoretical prediction based upon the assumption that the c \bar c pair in the psi(2S) does not annihilate directly into three gluons but rather survives before annihilating. No signal is observed, and a combined upper limit from six eta_c decay modes is determined to be B(psi(2S) -> eta_c pi^+pi^-pi^0) < 1.0 x 10^-3 at 90% C.L. This upper limit is about an order of magnitude below the theoretical expectation.Comment: 8 pages postscript,also available through http://www.lns.cornell.edu/public/CLNS/2006

    Suppressed Decays of D_s^+ Mesons to Two Pseudoscalar Mesons

    Get PDF
    Using data collected near the Ds*+ Ds- peak production energy Ecm = 4170 MeV by the CLEO-c detector, we study the decays of Ds+ mesons to two pseudoscalar mesons. We report on searches for the singly-Cabibbo-suppressed Ds+ decay modes K+ eta, K+ eta', pi+ K0S, K+ pi0, and the isospin-forbidden decay mode Ds+ to pi+ pi0. We normalize with respect to the Cabibbo-favored Ds+ modes pi+ eta, pi+ eta', and K+ K0S, and obtain ratios of branching fractions: Ds+ to K+ eta / Ds+ to pi+ eta = (8.9 +- 1.5 +- 0.4)%, Ds+ to K+ eta' / Ds+ to pi+ eta' = (4.2 +- 1.3 +- 0.3)%, Ds+ to pi+ K0S / Ds+ to K+ K0S = (8.2 +- 0.9 +- 0.2)%, Ds+ to K+ pi0 / Ds+ to K+ K0S = (5.0 +- 1.2 +- 0.6)%, and Ds+ to pi+ pi0 / Ds+ to K+ K0S < 4.1% at 90% CL, where the uncertainties are statistical and systematic, respectively.Comment: 9 pages postscript,also available through http://www.lns.cornell.edu/public/CLNS/2007/, Submitted to PR
    corecore